Uncategorized

Algorithms to Assess Stroke Risk are Markedly Worse for Black Americans

Current medical standards for accessing stroke risk perform worse for Black Americans than they do for white Americans, potentially creating a self-perpetuating driver of health inequities. A study, led by Duke Health researchers and appearing online Jan. 24 in the Journal of the American Medical Association, evaluated various existing algorithms and two methods of artificial intelligence assessment that are aimed at predicting a person’s risk of stroke within the next 10 years. The study found that all algorithms were worse at stratifying the risk for people who are Black than people who are white, regardless of the person’s gender. The implications are at the individual and population levels: people at high risk of stroke might not receive treatment, and those at low or no risk are unnecessarily treated.

READ MORE

AI Health Seminar: ABCDS Oversight – A framework for the governance and evaluation of algorithms to be deployed at Duke Health

Save the date: February 14, 2023, 12:00 PM EST: Duke AI Health’s Nicoleta Economou, PhD, joins Duke DHTS’s Armando D. Bedoya MD MMCi, to present: ‘Algorithm-Based Clinical Decision Support (ABCDS) Oversight: A framework for the governance and evaluation of algorithms to be deployed at Duke Health.’ During the webinar, which is open to members internal and external to Duke, Drs. Economou and Bedoya will discuss highlights from their recent paper published in the Journal of the American Medical Informatics Association (JAMIA).

REGISTER

Article: Building Better Guardrails for Algorithmic Medicine

Recent years have seen growing interest in the use of artificial intelligence tools for healthcare applications, including diagnosis, risk prediction, clinical decision support, and resource management. Capable of finding hidden patterns within the enormous amounts of data that reside in patient electronic health records (EHRs) and administrative databases, these algorithmic tools are diffusing across the world of patient care. Often, health AI applications are accompanied by assurances of their potential for making medical practice better, safer, and fairer. The reality, however, has turned out to be more complex.

READ MORE

MITRE Grand Challenges Power Hour: Modeling Equitable AI in Digital Health

Join Duke AI Health Director Michael Pencina, PhD, as he takes part in discussions with expert panelists convened from government, industry and academia to discuss recent advances in health AI, including structural biological modeling, computer vision algorithms, and ethical frameworks for employing AI in healthcare. This virtual event, “Modeling Equitable AI in Digital Health,” is hosted by MITRE and will take place starting at 4:00 PM EST on Thursday, December 8, 2022.

REGISTER

Blog: My Cancer on MyChart

DCRI Science and Digital Officer Eric Perakslis, PhD, shares a deeply personal perspective on a recent federal mandate that expands patients’ access to data stored in their EHRs – but also carries its own potential for risks. In his essay, Dr. Perakslis combines the patient and tech expert viewpoints as he surveys the “lumpy, bumpy, imperfect progress” toward better data transparency while undergoing cancer diagnosis and treatment.

READ MORE

AI Health Data Science Fellowship Program Welcomes New Members

The AI Health Data Science Fellowship Program is a two-year training program focused on data science with healthcare applications, designed for early-career data scientists with strong backgrounds in quantitative disciplines. Launched in fall of 2019, the program currently has 5 fellows, 2 staff data scientists, and 5 alumni. The program recently came together in-person for lunch for the first time since the pandemic. They gathered to welcome 2 new members: new fellow Angel Huang and new Data Scientist, John Rollman.

READ MORE

Chief AI Health Scientist Ricard Henao Named Associate Professor

Duke AI Health congratulates Chief AI Health Scientist Ricardo Henao, PhD, on his promotion to the rank of Associate Professor in the Department of Biostatistics and Bioinformatics in the Duke University School of Medicine. Dr. Henao is a major presence in health data science at Duke, where his leadership and expertise in machine learning methods and implementation have made him a sought-after collaborator and instructor. “Dr. Henao is a major asset to Duke AI Health and to the larger Duke community,” said Michael Pencina, PhD, director of Duke AI Health and vice dean for data science at the School of Medicine. “We feel fortunate to be able to benefit from such a rare combination of talent and knowledge spanning research, application, and teaching.”

READ MORE

Duke AI Health Director Michael Pencina Surpasses 100K Citations for Academic Research​

Duke AI Health Director and Vice Dean for Data Science Michael J. Pencina, PhD, has achieved a major academic milestone: according to Google Scholar’s analytics, he has recently passed the 100,000 mark for academic citations of his work. Pencina, who in addition to his leadership role in Duke’s efforts to develop, evaluate, and implement ethical and equitable data science, has also worked extensively on the development and evaluation of risk prediction models and clinical trial designs.

READ MORE

Request for Comments: Coalition for Health AI’s White Paper on Bias, Equity, and Fairness

As a member of the Coalition for Health AI, Duke AI Health is working to develop a consensus-driven framework to drive high-quality health care through the adoption of credible, fair, and transparent health AI systems. The coalition is convening a series of virtual workgroup sessions to define core principles and has published a white paper from its first meeting: “Bias, Equity, and Fairness.” Please review the paper and submit your feedback by Sept. 15: https://bit.ly/3wbAXQx. With the help of your ideas, the Coalition for Health AI can advance towards establishing clear and appropriate guidelines and guardrails for the fair, ethical, and useful application of AI and machine learning in health care settings.

READ MORE

Portrait of Duke AI Health Director Michael Pencina, PhD

Much-Touted Genomic Test Score Shows Minimal Utility in Study Led by AI Health Director Michael Pencina

New research led by Duke AI Health Director Michael Pencina, PhD, published recently in the journal Circulation, looked at the value of using a genomic test to predict the future risk of heart disease. Pencina and colleagues found that the genomic test, referred to as the polygenic risk score (PRS), only marginally added to the predictive information obtained through the assessment of traditional risk factors, concluding that the PRS “had minimal clinical utility”.

READ MORE